Skip to main content

Manipulatives

 

Using manipulatives in elementary mathematics is extremely important for students to gain a conceptual understanding of a variety of mathematical topics. It can be difficult for teachers to determine if students can transfer their understanding from manipulatives to other situations but this is why teachers need to plan time to have students learn the concepts with the manipulatives and then give the students time to solve the problems and only use manipulatives to check their work before finally removing the manipulatives and assessing the student’s knowledge because they won’t usually have these manipulatives in higher grades and outside of the classroom. In order to assess this growth and understanding, teacher observation and questioning are crucial. Teachers need to walk around the classroom or pull individual students or small groups and have students demonstrate their thinking with and without manipulatives. Manipulatives are also great because they help students improve their problem-solving skills by using different representations of the same problem and being able to decontextualize the problem to solve with the manipulatives and then contextualize it back to the original problem 


Although group work has many benefits, it can be difficult to hold students accountable for learning when in groups. One way to do this is to purposefully build groups of students who are all learning at the same level. If a group has one or two students who are at a higher level, those students may do all the work for the group and the other students won’t learn anything. It is also helpful for teachers to build groups of students that get along with each other so they feel comfortable trying and making mistakes. During group work, it can also be difficult to assess each person’s depth of understanding. Teachers should be walking around the classroom observing students and jumping in to ask questions to students about what they are doing and having students explain their reasoning. 


Comments

Popular posts from this blog

Ch 4: Build Procedural Fluency from Conceptual Understanding

A conceptual understanding of math is essential for students to be successful in math classes throughout their life. To me, conceptual understanding is the basics of math (addition, subtraction, multiplication, division, equalities, etc), why these concepts work, how they work together, and then being able to remember and draw from these concepts in more complex problems. In order for students to gather conceptual understanding, they need to be willing and ready to learn and they also need to believe in themselves and their intelligence. The teacher's role is to be the expert but to guide students toward these understandings and not simply state them like facts, or else students will memorize them and not understand why these concepts work and why they are important in the future.  Procedural fluency is the ability to use equations, representations, manipulatives, etc to solve a simple problem. The word simple is relative to the child’s grade level and also their academic level. Fo...

Math Applet Review 2

  https://www.nctm.org/Classroom-Resources/Illuminations/Interactives/Coin-Box/   The second app I decided to review is also from the Illuminations (NCTM) website and is called Coin Box. This game is designed for PreK through 5th grade and the objective is to learn how to count, collect, exchange, and make change for coins and works best on tablets and laptops. The easiest level of the game shows a small collection of coins and asks you to determine the total value. One unique feature of this app is that you can drag coins into a box on the side and then choose which larger value coin is equal to it. For example, I put two nickels into the box on the side and chose to exchange them for one dime. This is a great strategy to help students count if it is easier for them to count by 10s or 25s than 1s, 5s, 10s, and 25s. The second level of this game asks you to collect a certain amount of coins. It asked me to collect 73 cents so I added two quarters, two dimes, and three pennies ...